
Task 4 Report

Primary: Anuk Centellas Secondary: Katelynn Carlson, Cooper Cox, Nina Ervin

1 Methods

We used Scikit-learn to test various model types for this dataset. Since the dataset is large and
this is a classification task, a neural network (NN) was the first model we experimented with. We
used MLPClassifier to create a neural network and manually tuned the hyperparameters, saving
the trained models that performed best in joblib files. We also created a linear model using
LogisticRegression because it was simple to implement and gave us another baseline. The linear
model uses StandardScalar from Scikit-learn to preprocess the data. We also experimented with
random forest models using RandomForestClassifier because the input data is low dimensional,
and although the dataset is large, we wanted to explore different model types. We also created an
ensemble model with some of our trained NNs, experimenting with the number of NNs and the
number of votes that each NN is given. To create a baseline, we calculated the accuracy when the
most common class was predicted for all classes. We did this for both the training data and the dev
set.

2 Model Details

After tuning various neural networks, we created an ensemble model consisting of the twelve best
performing NNs. All of the NNs in the ensemble model use early stopping to prevent overfitting,
ReLU as the activation function, and Adam as the optimizer. NNs 7 and 11 use an adaptive learning
rate while the rest use a constant learning rate. The ensemble model uses probabilistic voting to
predict the class for each input through the predict proba method in Scikit-learn. The four best
performing neural networks within the ensemble model are given three votes each while the other
NNs are given one vote each. The hyperparameters for each of the twelve NNs (ordered from best
to worst performance) are presented in Table 1.

Table 1: Hyperparameters of NNs in Ensemble Model

NN Num Hidden Layers Num Hidden Units Minibatch Size Learning Rate

NN 1 5 64 128 0.0001
NN 2 5 64 128 0.0001
NN 3 5 64 128 0.0001
NN 4 5 64 128 0.0001
NN 5 5 64 128 0.0001
NN 6 8 64 64 0.00001
NN 7 7 64 64 0.00001
NN 8 5 64 128 0.0001
NN 9 3 256 64 0.000001
NN 10 3 256 64 0.00001
NN 11 5 64 64 0.00001
NN 12 3 256 64 0.001

1



3 Results

Table 2: Accuracy for Baselines and Models

Model Type Accuracy (Dev)

Baseline (Avg Mode Train) 0.127
Baseline (Avg Mode Dev) 0.142

Linear Model 0.406
Neural Network (Best) 0.449
Random Forest 0.292

Ensemble Model (NNs) 0.456

Table 2 shows the majority class baselines and
the results from the trained models after hyper-
prameter tuning. All models do significantly
better than the baselines, with the ensemble
model having the best performance overall.
While the random forest does better than the
baselines, it performs poorly when compared
to all other models. This is likely due to insuffi-
cient hyperparameter tuning, which is difficult
given the size of the dataset. For the neural
networks, we found that 5 hidden layers gives
the best performance while being less computa-
tionally expensive, since the performance does
not improve with more than 5 layers. We also

found that 64 hidden units generally provides the best performance with 5 layers, and that minibatch
sizes ranging from 16 to 512 have a minimal impact on performance. We tried different learning
rates and observed that when set below 0.001, the NN performs worse, and when set above 0.001, the
NN usually performs marginally better than when set to 0.001. When creating the ensemble model,
we experimented with giving the top four NNs more votes than the rest of the NNs. We found
that three votes is the optimal number, as shown in Figure 1. Although the performance difference
is minimal, the best result is with three votes. We include twelve NNs because the performance
increases as we add more, shown in Figure 2, but the performance of the individual NN after the
twelfth best one decreases more significantly.

Figure 1 Figure 2

4 Distribution Of Work

As a group we collaborated on ideas and modeling suggestions. All code and results for task 4 were
made by Anuk Centellas. The task 4 report was written by Anuk Centellas, with review and editing
by all other group members. The results table formatting was written by Nina Ervin.

2


